GATE-2012 ECE Q24 (math)

Question 24 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q24. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X,Y] is less than 1/2 is (A) 3/4 (B) 9/16 (C) 1/4 (D) 2/3

Read More

GATE-2012 ECE Q13 (circuits)

Question 13 on analog electronics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q13. The diodes and the capacitors in the circuit shown are ideal. The voltage  across the diode  is (A)  (B)   (C)  (D) Solution The first half of the circuit is a negative clamper circuit and the second half…

Read More

MIMO with ML equalization

We have discussed quite a few receiver structures for a 2×2 MIMO channel namely, (a) Zero Forcing (ZF) equalization (b) Minimum Mean Square Error (MMSE) equalization (c) Zero Forcing equalization with Successive Interference Cancellation (ZF-SIC) (d) ZF-SIC with optimal ordering and (e) MIMO with MMSE SIC and optimal ordering From the above receiver structures, we…

Read More

Scaling factor in QAM

When QAM (Quadrature Amplitude Modulation) is used, typically one may find a scaling factor associated with the constellation mapping operation. It may be reasonably obvious that this scaling factor is for normalizing the average energy to one. This post attempts to compute the average energy of the 16-QAM, 64-QAM and M-QAM constellation (where is a…

Read More

GATE-2012 ECE Q16 (electromagnetics)

Question 16 on electromagnetics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q16. A coaxial cable with an inner diameter of 1mm and outer diameter of 2.4mm is filled with a dielectric of relative permittivity 10.89. Given ,  the characteristic impedance of the cable is (A)  (B)  (C)  (D)  Solution To…

Read More

OCW: Communication System Design

While browsing through the web for materials on the wireless communication and implementation, found this rich set of articles as part of MIT OPEN COURSEWARE program. The course is from Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Read More