Books

Happy holidays! 🙂 Wishing every one merry Christmas and a great year 2009 and beyond. I will list down some of the books which I have on my desk. They help me with the math and simulations Digital Communication: Third Edition, by John R. Barry, Edward A. Lee, David G. Messerschmitt

Read More

Viterbi decoder

Coding is a technique where redundancy is added to original bit sequence to increase the reliability of the communication. Lets discuss a simple binary convolutional coding scheme at the transmitter and the associated Viterbi (maximum likelihood) decoding scheme at the receiver. Update: For some reason, the blog is unable to display the article which discuss…

Read More

Scaling factor in QAM

When QAM (Quadrature Amplitude Modulation) is used, typically one may find a scaling factor associated with the constellation mapping operation. It may be reasonably obvious that this scaling factor is for normalizing the average energy to one. This post attempts to compute the average energy of the 16-QAM, 64-QAM and M-QAM constellation (where is a…

Read More

Bit Error Rate (BER) for frequency shift keying with coherent demodulation

Following the request by Siti Naimah, this post discuss the bit error probability for coherent demodulation of binary Frequency Shift Keying (BFSK) along with a small Matlab code snippet. Using the definition provided in Sec 4.4.4 of [DIG-COMM-SKLAR]), in binary Frequency shift keying (BFSK), the bits 0’s and 1’s are represented by signals and having…

Read More

Matlab or C for Viterbi Decoder?

Are you bothered by speed of the speed of the simulations which you develop in Matlab/Octave? I was not bothered much, till I ran into the Viterbi decoder. If you recall, the Matlab/Octave simulation script for BER computation with hard soft decision Viterbi algorithm provided in post Viterbi with finite survivor state memory took around…

Read More

GATE-2012 ECE Q46 (math)

Question 46 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q46. The maximum value of  in the interval [1, 6] is (A) 21 (B) 25 (C) 41 (D) 46 Solution Let us start by finding the critical points of the function . The first derivative is, . Solving by…

Read More