Oscillator phase noise

Oscillators are used in typical radio circuits to drive the mixer used for the up-conversion or down-conversion of the passband transmission. Ideally, the spectrum of the oscillator is expected to have an impulse at the frequency of oscillation with no frequency components else where. However the spectrum of practical oscillators do have spectrum skirts around…

Read More

BPSK BER with OFDM modulation

Oflate, I am getting frequent requests for bit error rate simulations using OFDM (Orthogonal Frequency Division Multiplexing) modulation. In this post, we will discuss a simple OFDM transmitter and receiver, find the relation between Eb/No (Bit to Noise ratio) and Es/No (Signal to Noise ratio) and compute the bit error rate with BPSK.

Read More

OCW: Communication System Design

While browsing through the web for materials on the wireless communication and implementation, found this rich set of articles as part of MIT OPEN COURSEWARE program. The course is from Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Read More

MIMO with MMSE SIC and optimal ordering

This post attempts to build further on the MIMO equalization schemes which we have discussed – (a) Minimum Mean Square Error (MMSE) equalization, (b) Zero Forcing equalization with Successive Interference Cancellation (ZF-SIC) and (c) ZF-SIC with optimal ordering. We have learned that successive interference cancellation with optimal ordering improves the performance with Zero Forcing equalization….

Read More

Scaling factor in QAM

When QAM (Quadrature Amplitude Modulation) is used, typically one may find a scaling factor associated with the constellation mapping operation. It may be reasonably obvious that this scaling factor is for normalizing the average energy to one. This post attempts to compute the average energy of the 16-QAM, 64-QAM and M-QAM constellation (where is a…

Read More

GATE-2012 ECE Q46 (math)

Question 46 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q46. The maximum value of  in the interval [1, 6] is (A) 21 (B) 25 (C) 41 (D) 46 Solution Let us start by finding the critical points of the function . The first derivative is, . Solving by…

Read More