Symbol Error Rate (SER) for QPSK (4-QAM) modulation

Given that we have discussed symbol error rate probability for a 4-PAM modulation, let us know focus on finding the symbol error probability for a QPSK (4-QAM) modulation scheme. Background Consider that the alphabets used for a QPSK (4-QAM) is (Refer example 5-35 in [DIG-COMM-BARRY-LEE-MESSERSCHMITT]). Download free e-Book discussing theoretical and simulated error rates for…

Read More

BER with Matched Filtering

In the post on transmit pulse shaping filter, we had discussed pulse shaping using rectangular and sinc. In this post we will discuss about optimal receiver structure when pulse shaping is used at the transmitter. The receiver structure is also called as matched filter. For the discussion, we will assume rectangular pulse shaping, the channel…

Read More

GATE-2012 ECE Q24 (math)

Question 24 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q24. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X,Y] is less than 1/2 is (A) 3/4 (B) 9/16 (C) 1/4 (D) 2/3

Read More

Receive diversity in AWGN

Some among you will be aware that in a wireless link having multiple antenna’s at the receiver (aka receive diversity) improves the bit error rate (BER) performance. In this post, let us try to understand the BER improvement with receive diversity. And, since we are just getting started, let us limit ourselves to additive white…

Read More

Sigma delta modulation

In an earlier post, it was mentioned that delta modulator without the quantizer is identical to convolving an input sequence with . Let us first try to validate that thought using a small MATLAB example and using the delta modulator circuit shown in Figure 9.13a of DSP-Proakis [1]. % delta modulation xn = sin(2*pi*1/64*[0:63]); xhatn…

Read More