MIMO with MMSE SIC and optimal ordering

This post attempts to build further on the MIMO equalization schemes which we have discussed – (a) Minimum Mean Square Error (MMSE) equalization, (b) Zero Forcing equalization with Successive Interference Cancellation (ZF-SIC) and (c) ZF-SIC with optimal ordering. We have learned that successive interference cancellation with optimal ordering improves the performance with Zero Forcing equalization….

Read More

Happy Birthday – dspLog

An important milestone for the dspLog happened on Oct 21st 2008. On this day last year, the blog migrated from the Blogger platform to the independently hosted platform at www.dsplog.com ! Belated birthday wishes for the blog!!! 🙂 Looking back, the first year was satisfying – both in terms of contents and traffic. We started…

Read More

GATE-2012 ECE Q28 (electromagnetics)

Question 28 on electromagnetics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q28. A transmission line with a characteristic impedance of 100 is used to match a 50 section to a 200 section. If the matching is to be done both at 429MHz and 1GHz, the length of the transmission line can be approximately (A) 82.5cm…

Read More

MIMO with MMSE equalizer

In a previous post, we had discussed a 2×2 MIMO transmission using BPSK modulation in Rayleigh channel with a Zero Forcing equalizer. The simulated results with the 2×2 MIMO system  with zero forcing equalizer showed matching results as obtained in for a 1×1 system for BPSK modulation in Rayleigh channel. In this post, we will…

Read More

Matlab or C for Viterbi Decoder?

Are you bothered by speed of the speed of the simulations which you develop in Matlab/Octave? I was not bothered much, till I ran into the Viterbi decoder. If you recall, the Matlab/Octave simulation script for BER computation with hard soft decision Viterbi algorithm provided in post Viterbi with finite survivor state memory took around…

Read More

GATE-2012 ECE Q12 (math)

Question 12 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q12. With initial condition  the solution of the differential equation,  is (A) (B) (C) (D) Solution From the product rule used to find the derivative of product of two or more functions, Applying this to the above equation, we…

Read More

GATE-2012 ECE Q2 (communication)

Question 52 on communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q2. The power spectral density of a real process for positive frequencies is shown below. The values of  and , respectively are (A)  (B)  (C)  (D)  Solution For a wide sense stationary function, the auto-correlation with delay  is defined as,…

Read More

Equal Gain Combining (EGC)

This is the second post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…

Read More