Sigma delta modulation

In an earlier post, it was mentioned that delta modulator without the quantizer is identical to convolving an input sequence with . Let us first try to validate that thought using a small MATLAB example and using the delta modulator circuit shown in Figure 9.13a of DSP-Proakis [1]. % delta modulation xn = sin(2*pi*1/64*[0:63]); xhatn…

Read More

Selection Diversity

This is the first post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…

Read More

2nd order sigma delta modulator

In a previous post, the variance of the in-band quantization noise for a first order sigma delta modulator was derived. Taking it one step furhter, let us find the variance of the quantization noise filtered by a second order filter. With a first order filter, the quantization noise passes through a system with transfer function…

Read More

GATE-2012 ECE Q47 (math)

Question 47 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q47. Given that and , the value of is (A)  (B)  (C)  (D)  Solution To answer this question, we need to refer to Cayley Hamilton Theorem. This is discussed briefly in Pages 310-311 of Introduction to Linear Algebra, Glibert Strang (buy…

Read More

GATE-2012 ECE Q16 (electromagnetics)

Question 16 on electromagnetics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q16. A coaxial cable with an inner diameter of 1mm and outer diameter of 2.4mm is filled with a dielectric of relative permittivity 10.89. Given ,  the characteristic impedance of the cable is (A)  (B)  (C)  (D)  Solution To…

Read More

GATE-2012 ECE Q46 (math)

Question 46 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q46. The maximum value of  in the interval [1, 6] is (A) 21 (B) 25 (C) 41 (D) 46 Solution Let us start by finding the critical points of the function . The first derivative is, . Solving by…

Read More

Migration to new template (skin)

Hi, Those visiting the blog might have noticed a fresh look to the dspLog. This new feel is thanks to the Thesis Magazine Skin provided by FourBlogger Skins. Click here to view more details. There some more tinkering required at some places. But, in general most of the settings are taken care. Hope you like…

Read More