Equal Gain Combining (EGC)

This is the second post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…

Read More

GATE-2012 ECE Q13 (circuits)

Question 13 on analog electronics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q13. The diodes and the capacitors in the circuit shown are ideal. The voltage  across the diode  is (A)  (B)   (C)  (D) Solution The first half of the circuit is a negative clamper circuit and the second half…

Read More

MIMO with MMSE equalizer

In a previous post, we had discussed a 2×2 MIMO transmission using BPSK modulation in Rayleigh channel with a Zero Forcing equalizer. The simulated results with the 2×2 MIMO system  with zero forcing equalizer showed matching results as obtained in for a 1×1 system for BPSK modulation in Rayleigh channel. In this post, we will…

Read More

Stochastic Gradient Descent

For curve fitting using linear regression, there exists a minor variant of Batch Gradient Descent algorithm, called Stochastic Gradient Descent. In the Batch Gradient Descent, the parameter vector  is updated as, . (loop over all elements of training set in one iteration) For Stochastic Gradient Descent, the vector gets updated as, at each iteration the…

Read More

Oscillator phase noise

Oscillators are used in typical radio circuits to drive the mixer used for the up-conversion or down-conversion of the passband transmission. Ideally, the spectrum of the oscillator is expected to have an impulse at the frequency of oscillation with no frequency components else where. However the spectrum of practical oscillators do have spectrum skirts around…

Read More

GATE-2012 ECE Q38 (communication)

Question 38 on Communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q38. A binary symmetric channel (BSC) has a transition probability of 1/8. If the binary transmit symbol X is such that P(X=0)=9/10, then the probability of error for an optimum receiver will be (A) 7/80 (B) 63/80 (C)…

Read More