IQ modulation and demodulation
Post describes about the need for I-Q modulation by comparing the spectral efficiency of passband PAM and passband QAM.
Post describes about the need for I-Q modulation by comparing the spectral efficiency of passband PAM and passband QAM.
In May 2008, we derived the theoretical symbol error rate for a general M-QAM modulation (in Embedded.com, DSPDesignLine.com and dsplog.com) under Additive White Gaussian Noise. While re-reading that post, felt that the article is nice and warrants a re-run, using OFDM as the underlying physical layer. This post discuss the derivation of symbol error rate for a general…
On July30th, 2008 I had sent a request for feedback to 93 subscribers who have opted to receive articles over email. As on 3rd August, I received the response from around 8 persons. Not bad, around 8.5% response. Thanks a lot for the feedback. I will summarize the response from the group and note down…
Question 7 on digital from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q7. The output Y of a 2-bit comparator is logic 1 whenever the 2 bit input A is greater than 2 bit input B. The number of combinations for which output is logic 1 is (A) 4 (B)…
In typical digital signal processing applications, there arises need to increase the sampling frequency of a signal sequence, where the higher sampling frequency is an integer multiple of the original sampling frequency i.e for a signal sequence with a sampling frequency , change the sampling frequency to , where is an integer.
In this post, the objective is to figure out the minimum separation between two sinusoidals having frequencies , of duration each to be orthogonal. Let the phase difference between the sinusoidals is where can take any value from to (Refer Example 4.3 [DIG-COMM-SKLAR]). For the two sinuosidals to be orthogonal,
Question 36 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q36. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is (A) 1/3 (B) 1/2 (C) 2/3 (D) 3/4 Solution Let us start by…
In DSP-Proakis, I found the problem 2.56 interesting as it provides insight into delta modulation. The task is to show that, where is any discrete time signal and is the unit step function.
Following a brief discussion with my friend Mr. Rethnakaran Pulikkoonattu on phase noise profiles, he pointed me to his write up on Oscillator Phase Noise and Sampling Clock Jitter . In this post, we will discuss the math behind integrating the phase noise power spectral density (in dBc/Hz) to find the root mean square jitter value.
Some of us would have used Newton’s method (also known as Newton-Raphson method) in some form or other. The method has quite a bit of history, starting with the Babylonian way of finding the square root and later over centuries reaching the present recursive way of finding the solution. In this post, we will describe…
Following discussion of bit error rate (BER) for BPSK and bit error rate for FSK, it may be interesting to move on to discuss a higher order constellation such as Pulse Amplitude Modulation (PAM). Consider that the alphabets used for a 4-PAM is (Refer example 5-34 in [DIG-COMM-BARRY-LEE-MESSERSCHMITT]).
In the past, we had discussed two transmit, one receive antenna Alamouti Space Time Block Coding (STBC) scheme. In this post, lets us discuss the impact of having two antennas at the receiver. For the discussion, we will assume that the channel is a flat fading Rayleigh multipath channel and the modulation is BPSK.
This is the third post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…