BPSK BER with OFDM modulation

Oflate, I am getting frequent requests for bit error rate simulations using OFDM (Orthogonal Frequency Division Multiplexing) modulation. In this post, we will discuss a simple OFDM transmitter and receiver, find the relation between Eb/No (Bit to Noise ratio) and Es/No (Signal to Noise ratio) and compute the bit error rate with BPSK.

Read More

Symbol Error Rate (SER) for QPSK (4-QAM) modulation

Given that we have discussed symbol error rate probability for a 4-PAM modulation, let us know focus on finding the symbol error probability for a QPSK (4-QAM) modulation scheme. Background Consider that the alphabets used for a QPSK (4-QAM) is (Refer example 5-35 in [DIG-COMM-BARRY-LEE-MESSERSCHMITT]). Download free e-Book discussing theoretical and simulated error rates for…

Read More

Selection Diversity

This is the first post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…

Read More

Chi Square Random Variable

While trying to derive the theoretical bit error rate (BER) for BPSK modulation in a Rayleigh fading channel, I realized that I need to discuss chi square random variable prior. What is chi-square random variable? Let there be independent and identically distributed Gaussian random variables with mean and variance and we form a new random…

Read More

GATE-2012 ECE Q52 (electromagnetics)

Question 52 on electromagnetics from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. An infinitely long uniform solid wire of radius  carries a uniform dc current of density . Q52. The magnetic field at a distance  from the center of the wire is proportional to (A)  for and for (B)  for  and  for  (C)  for  and  for  (D)  for  and  for  Solution…

Read More

GATE-2012 ECE Q46 (math)

Question 46 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q46. The maximum value of  in the interval [1, 6] is (A) 21 (B) 25 (C) 41 (D) 46 Solution Let us start by finding the critical points of the function . The first derivative is, . Solving by…

Read More

Deriving PDF of Rayleigh random variable

In the post on Rayleigh channel model, we stated that a circularly symmetric random variable is of the form , where real and imaginary parts are zero mean independent and identically distributed (iid) Gaussian random variables. The magnitude which has the probability density, is called a Rayleigh random variable. Further, the phase is uniformly distributed from…

Read More