MIMO with MMSE equalizer

In a previous post, we had discussed a 2×2 MIMO transmission using BPSK modulation in Rayleigh channel with a Zero Forcing equalizer. The simulated results with the 2×2 MIMO system  with zero forcing equalizer showed matching results as obtained in for a 1×1 system for BPSK modulation in Rayleigh channel. In this post, we will…

Read More

Alamouti STBC

In the recent past, we have discussed three receive diversity schemes – Selection combining, Equal Gain Combining and Maximal Ratio Combining. All the three approaches used the antenna array at the receiver to improve the demodulation performance, albeit with different levels of complexity. Time to move on to a transmit diversity scheme where the information…

Read More

Comparing BPSK, QPSK, 4PAM, 16QAM, 16PSK, 64QAM and 32PSK

I have written another article in DSPDesginLine.com. This article can be treated as the third post in the series aimed at understanding Shannon’s capacity equation. For the first two posts in the series are: 1. Understanding Shannon’s capacity equation 2. Bounds on Communication based on Shannon’s capacity The article summarizes the symbol error rate derivations…

Read More

Closed form solution for linear regression

In the previous post on Batch Gradient Descent and Stochastic Gradient Descent, we looked at two iterative methods for finding the parameter vector  which minimizes the square of the error between the predicted value  and the actual output  for all  values in the training set. A closed form solution for finding the parameter vector  is possible, and in this post…

Read More

Negative Frequency

Last week, I received an email from Mr. Kishore. He was wondering about the physical significance of negative frequency. Does negative frequency really exist? Though I have seen conflicting views on the net (thread in complextoreal.com, thread in comp.dsp), my perspective is that negative frequency exist. The concept of negative frequency helps me a lot…

Read More

GATE-2012 ECE Q24 (math)

Question 24 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q24. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X,Y] is less than 1/2 is (A) 3/4 (B) 9/16 (C) 1/4 (D) 2/3

Read More

Receive diversity in AWGN

Some among you will be aware that in a wireless link having multiple antenna’s at the receiver (aka receive diversity) improves the bit error rate (BER) performance. In this post, let us try to understand the BER improvement with receive diversity. And, since we are just getting started, let us limit ourselves to additive white…

Read More

GATE-2012 ECE Q36 (math)

Question 36 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q36. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is (A) 1/3 (B) 1/2 (C) 2/3 (D) 3/4 Solution Let us start by…

Read More

GATE-2012 ECE Q38 (communication)

Question 38 on Communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q38. A binary symmetric channel (BSC) has a transition probability of 1/8. If the binary transmit symbol X is such that P(X=0)=9/10, then the probability of error for an optimum receiver will be (A) 7/80 (B) 63/80 (C)…

Read More