Noise Figure of cascaded stages
Following the discussion on thermal noise and it’s modeling and noise figure computation for a simple resistor network, in this article let us discuss the Noise Figure of cascaded stages.
Following the discussion on thermal noise and it’s modeling and noise figure computation for a simple resistor network, in this article let us discuss the Noise Figure of cascaded stages.
Hi, Those visiting the blog might have noticed a fresh look to the dspLog. This new feel is thanks to the Thesis Magazine Skin provided by FourBlogger Skins. Click here to view more details. There some more tinkering required at some places. But, in general most of the settings are taken care. Hope you like…
This is the third post in the series discussing receiver diversity in a wireless link. Receiver diversity is a form of space diversity, where there are multiple antennas at the receiver. The presence of receiver diversity poses an interesting problem – how do we use ‘effectively‘ the information from all the antennas to demodulate the…
In the previous post on Binary to Gray code conversion for PSK, I had claimed that “for a general M-QAM modulation the binary to Gray code conversion is bit more complicated“. However following a closer look, I realize that this is not so complicated. 🙂 The QAM scenario can be treated as independent PAM modulation…
Wishing all the readers of dsplog.com a great year 2010 ! Its been a mixed year for dsplog. Some key milestones a) Crossing 1000 subscribers with 1100+ comments in March 2009 b) Crossing 100 posts with 2200 subscribers and 2600+ comments in October 2009 c) As I write this, we have 102 posts with 2603…
In this post, we will explore a probable way of reducing PAPR (peak to average power ratio) in OFDM by changing the phase of some of the subcarriers. This is in response to the comment to post on Peak to Average power ratio for OFDM, where Mr. Elibom suggested to reduce the PAPR by cyclically…
Question 26 on Electronic Devices from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q26. The source of a silicon (), n-channel MOS transistor has an area of and a depth of  . If the dopant density in the source is , the number of holes in the source region with…
My friend Mr. Balaji volunteers for Vibha, a non-profit organization whose mission is to ensure that every underprivileged child attains his or her right to education, health and opportunity. Vibha, which was founded in 1991 has a volunteer network of 825 members spread across Atlanta, Austin, Bay Area, Boston, Chicago, Dallas, Houston, Jacksonville, Los Angeles,…
Following a brief discussion with my friend Mr. Rethnakaran Pulikkoonattu on phase noise profiles, he pointed me to his write up on Oscillator Phase Noise and Sampling Clock Jitter . In this post, we will discuss the math behind integrating the phase noise power spectral density (in dBc/Hz) to find the root mean square jitter value.
Question 7 on digital from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q7. The output Y of a 2-bit comparator is logic 1 whenever the 2 bit input A is greater than 2 bit input B. The number of combinations for which output is logic 1 is (A) 4 (B)…
In DSP-Proakis, I found the problem 2.56 interesting as it provides insight into delta modulation. The task is to show that, where is any discrete time signal and is the unit step function.
In this post, let us try to derive the symbol error rate for 16-PSK (16-Phase Shift Keying) modulation. Consider a general M-PSK modulation, where the alphabets, are used. (Refer example 5-38 in [DIG-COMM-BARRY-LEE-MESSERSCHMITT]) Figure: 16-PSK constellation plot
In the past, I have wondered about discussing personal thoughts in this blog. The answer in my mind was NO and I ve been focusing only on technical topics till date. However, there is a change of mind, thanks to my friend Manoj. Thanks to him, I happened to see Prof. Randy Pausch’s brief 10…
Question 34 on signals from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q34. Consider the differential equation with and The numerical value of is (A) -2 (B) -1 (C) 0 (D) 1