Deriving PDF of Rayleigh random variable

In the post on Rayleigh channel model, we stated that a circularly symmetric random variable is of the form , where real and imaginary parts are zero mean independent and identically distributed (iid) Gaussian random variables. The magnitude which has the probability density, is called a Rayleigh random variable. Further, the phase is uniformly distributed from…

Read More

BER with Matched Filtering

In the post on transmit pulse shaping filter, we had discussed pulse shaping using rectangular and sinc. In this post we will discuss about optimal receiver structure when pulse shaping is used at the transmitter. The receiver structure is also called as matched filter. For the discussion, we will assume rectangular pulse shaping, the channel…

Read More

Matlab or C for Viterbi Decoder?

Are you bothered by speed of the speed of the simulations which you develop in Matlab/Octave? I was not bothered much, till I ran into the Viterbi decoder. If you recall, the Matlab/Octave simulation script for BER computation with hard soft decision Viterbi algorithm provided in post Viterbi with finite survivor state memory took around…

Read More

Blog on DSP

I happened to visit ‘The Digital Signal Processing Blog’, maintained by Mr. Andres Kwasinski, Ph. D. In the blog one can find details about the upcoming IEEE conferences pertaining to communication and multimedia processing. Further, in some of the posts, author shares his thoughts on topics like fixed point arithmetic (here) and wavelets (here) etc….

Read More

GATE-2012 ECE Q24 (math)

Question 24 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q24. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X,Y] is less than 1/2 is (A) 3/4 (B) 9/16 (C) 1/4 (D) 2/3

Read More

Comparing BPSK, QPSK, 4PAM, 16QAM, 16PSK, 64QAM and 32PSK

I have written another article in DSPDesginLine.com. This article can be treated as the third post in the series aimed at understanding Shannon’s capacity equation. For the first two posts in the series are: 1. Understanding Shannon’s capacity equation 2. Bounds on Communication based on Shannon’s capacity The article summarizes the symbol error rate derivations…

Read More