Articles

## Update : Correction to solution of GATE-2012 ECE Q38

Thanks to Mr. Raghava G D’s comments on the post discussing Question 38 on Communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper, realized that I had made an error in the solution. Have the updated the post with the right answer and additional explanations.

## GATE-2012 ECE Q38 (communication)

Question 38 on Communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q38. A binary symmetric channel (BSC) has a transition probability of 1/8. If the binary transmit symbol X is such that P(X=0)=9/10, then the probability of error for an optimum receiver will be (A) 7/80 (B) 63/80 (C)…

## GATE-2012 ECE Q3 (communication)

Question 3 on Communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q3. In a baseband communications link, frequencies upto 3500Hz are used for signalling. Using a raised cosine pulse with 75% excess bandwidth and for no inter-symbol interference, the maximum possible signaling rate in symbols per second is, (A)…

## GATE-2012 ECE Q26 (electronic devices)

Question 26 on Electronic Devices from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q26. The source of a silicon (), n-channel MOS transistor has an area of and a depth of  . If the dopant density in the source is , the number of holes in the source region with…

## GATE-2012 ECE Q36 (math)

Question 36 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q36. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is (A) 1/3 (B) 1/2 (C) 2/3 (D) 3/4 Solution Let us start by…

## GATE-2012 ECE Q46 (math)

Question 46 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q46. The maximum value of  in the interval [1, 6] is (A) 21 (B) 25 (C) 41 (D) 46 Solution Let us start by finding the critical points of the function . The first derivative is, . Solving by…

## GATE-2012 ECE Q24 (math)

Question 24 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q24. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X,Y] is less than 1/2 is (A) 3/4 (B) 9/16 (C) 1/4 (D) 2/3

## GATE-2012 ECE Q25 (math)

Question 25 on math from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q25. If , then the value of  is, (a)  (b)  (c) (d) 1

## GATE-2012 ECE Q6 (digital)

Question 6 on digital circuit from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper. Q6. Consider the given circuit In this circuit, the race around (A) does not occur (B) occurs when CLK=0 (C) occurs when CLK=1 and A=B=1 (D) occurs when CLK=1 and A=B=0

## Modeling phase noise (frequency domain approach)

In typical wireless system simulations, there is  a need to model the phase noise profile of the local oscillator. For eg, the phase noise profile of the oscillator can be of the shape described in the post on Phase Noise Power Spectral Density to Jitter. While looking around for example Matlab code, found two references…

## Migration to new template (skin)

Hi, Those visiting the blog might have noticed a fresh look to the dspLog. This new feel is thanks to the Thesis Magazine Skin provided by FourBlogger Skins. Click here to view more details. There some more tinkering required at some places. But, in general most of the settings are taken care. Hope you like…

## Transmit spectrum with phase noise

The earlier posts on phase noise discussed about phase noise in oscillators, conversion of phase noise profile to jitter and the impact of phase noise on the error vector magnitude (evm). This post discuss the impact of phase noise on the spectrum of the transmit waveform.  A simple random QPSK modulated symbols, oversampled and passed…

## EVM with phase noise

The previous post on phase noise discussed about finding the root mean square phase noise for a given phase noise profile. In this post let us discuss about the impact of phase noise on the error vector magnitude (evm) of a transmit symbol.

## Phase noise power spectral density to Jitter

Following a brief discussion with my friend Mr. Rethnakaran Pulikkoonattu on phase noise profiles, he pointed me to his write up on Oscillator Phase Noise and Sampling Clock Jitter . In this post, we will discuss the math behind integrating the phase noise power spectral density (in dBc/Hz) to find the root mean square jitter value.