Gradients for linear regression

Understanding gradients is essential in machine learning, as they indicate the direction and rate of change in the loss function with respect to model parameters. This post covers the gradients for the vanilla Linear Regression case taking two loss functions Mean Square Error (MSE) and Mean Absolute Error (MAE) as examples. The gradients computed analytically…

Read More

Six equalizers for V-BLAST

In the past, we had discussed several posts on two transmit two receive MIMO communication, where the transmission was based on V-BLAST. The details about V-BLAST can be read from the landmark paper V-BLAST: An architeture for realizing very high data rates over the rich scattering wireless channel – P. W. Wolniansky, G. J. Foschini,…

Read More

MIMO with ML equalization

We have discussed quite a few receiver structures for a 2×2 MIMO channel namely, (a) Zero Forcing (ZF) equalization (b) Minimum Mean Square Error (MMSE) equalization (c) Zero Forcing equalization with Successive Interference Cancellation (ZF-SIC) (d) ZF-SIC with optimal ordering and (e) MIMO with MMSE SIC and optimal ordering From the above receiver structures, we…

Read More