Skip to content

DSP LOG

Signal Processing

Random Articles
  • About
    • Articles
  • Advertise
  • Blog
  • Home
  • Search
  • Home
  • 16-QAM

16-QAM

  • Modulation

Symbol Error rate for QAM (16, 64, 256,.., M-QAM)

Krishna Sankar14 years ago13 years ago441 mins

In May 2008, we derived the theoretical symbol error rate for a general M-QAM modulation (in  Embedded.com, DSPDesignLine.com and dsplog.com) under Additive White Gaussian Noise. While re-reading that post, felt that the article is nice and warrants a re-run, using OFDM as the underlying physical layer. This post discuss the derivation of symbol error rate for a general…

Read More
  • Modulation

Softbit for 16QAM

Krishna Sankar17 years ago13 years ago341 mins

In the post on Soft Input Viterbi decoder, we had discussed BPSK modulation with convolutional coding and soft input Viterbi decoding in AWGN channel. Let us know discuss the derivation of soft bits for 16QAM modulation scheme with Gray coded bit mapping. The channel is assumed to be AWGN alone.

Read More

Tag

16-PSK 16-QAM 802.11a 2012 AI Alamouti AWGN BPSK Capacity Communication conference Digital Diversity ECE electromagnetics eye diagram first order FSK GATE Gray IISc interpolation machine_learning Math MIMO ML MMSE noise Nyquist OFDM PAM pdf phase phase_noise PSK pulse shaping QAM raised cosine Rayleigh SIC STBC TETRA transmitter Viterbi ZF

Categories

Archives

Comment

  • Word Embeddings using neural networks - DSP LOG on Gradients for multi class classification with Softmax
  • FEC Forward Error Correction on GNU Radio – Telecommunications, Navigation & Electronics on Bit Error Rate (BER) for BPSK modulation
  • 現代デジタル通信システムにおける耐ジャミング性の包括的分析:要求されるジャマー対信号比の算出(Gemini deepResearch のレポート) | SDR技術のまとめ on Bit Error Rate (BER) for frequency shift keying with coherent demodulation
  • Gradients for multi class classification with Softmax - DSP LOG on Gradients for linear regression
  • Gradients for multi class classification with Softmax - DSP LOG on Gradients for Binary Classification with Sigmoid
  • Krishna Sankar on Download free e-book on error probability in AWGN
  • rohini on Download free e-book on error probability in AWGN

Recent Posts

  • Word Embeddings using neural networks
  • Gradients for multi class classification with Softmax
  • Gradients for Binary Classification with Sigmoid
  • Gradients for linear regression
  • Migrated to Amazon EC2 instance (from shared hosting)

DSP

  • ANALOG & DSP
  • Complex to Real
  • DSP DesignLine
  • DSP Guide
  • DSPRelated
  • Octave
  • Octave-Forge
  • Online Scientific Calculator (from EEWeb.com)

FPGA

  • FPGA Central

General

  • Amit Agarwal – Digital Inspiration
  • Enchanting Kerala